Sucessões ou Seqüências

DEFINIÇÃO

Conjuntos de objetos de qualquer natureza, organizados ou escritos numa ordem bem determinada.

Para representar uma seqüência, escrevemos seus elementos, ou termos, entre parênteses.

É importante destacar que, ao contrário do que ocorre num conjunto, qualquer alteração na ordem dos elementos de uma seqüência altera a própria seqüência.

Exemplos:

a) O conjunto (janeiro, fevereiro, março, abril… dezembro) é chamado seqüência ou sucessão dos meses do ano.

b) O conjunto ordenado (0, 1, 2, 3, 4, 5…) é chamado seqüência ou sucessão dos números naturais.

SEQÜÊNCIAS NUMÉRICAS

São conjuntos de números reais dispostos numa certa ordem. Uma seqüência numérica pode ser finita ou infinita.

Exemplos:

a) (3, 6, 9, 12) é uma seqüência finita.
b) (5, 10, 15…) é uma seqüência infinita.
REPRESENTAÇÃO DE UMA SEQÜÊNCIA

A representação matemática de uma sucessão é dada da seguinte forma:

(a1, a2, a3, …an-1, an), em que:

· a1 é o primeiro termo;

· a2 é o segundo termo;

· an é o enésimo termo.

Aplicação

Dada a seqüência (2, 4, 6, 8, 10), calcular:

a) a3 b) a2+ 3a1

Solução:

a) a3 é o terceiro termo; logo, a3 = 6.

b) a2+ 3a1 = 4 + 3.2 = 4 + 6 = 10. 

PROGRESSÃO ARITMÉTICA (P. A.)

É toda seqüência numérica em que cada termo, a partir do segundo, é igual à soma de seu antecessor com um número constante r (razão).

Exemplos:

a) (3, 5, 7, 9…)

5 = 3 + 2

7 = 5 + 2 →2 é a razão da progressão aritmética.

9 = 7 + 2
b) (5, 10, 15, 20)

10 = 5 + 5

15 = 10 + 5 →5 é a razão da progressão aritmética.

20 = 15 + 5